
DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

UNIT-2

SYLLABUS:
Relational Model: The Relational Model Concepts, Relational Model Constraints and
Relational Database Schemas.
SQL: Data Definition, Constraints, and Basic Queries and Updates, SQL Advanced Queries,
Assertions, Triggers, and Views
Formal Relational Languages: Relational Algebra: Unary Relational Operations: Select and
Project, Relational Algebra Operations from Set Theory, Binary Relational Operations: Join
and Division, Examples of Queries in Relational Algebra.

1. Relational Model:
Introduction

The relational data model was first introduced by Ted Codd of IBM Research in 1970 in a

classic paper (Codd 1970), and it attracted immediate attention due to its simplicity and

mathematical foundation. The model uses the concept of a mathematical relation which looks

somewhat like a table of values as its basic building block, and has its theoretical basis in set

theory and first-order predicate logic.

The first commercial implementations of the relational model became available in the early

1980s, such as the SQL/DS system on the MVS operating system by IBM and the Oracle

DBMS. Since then, the model has been implemented in a large number of commercial

systems. Current popular relational DBMSs (RDBMSs) include DB2 and Informix Dynamic

Server (from IBM), Oracle and Rdb (from Oracle), Sybase DBMS (from Sybase) and

SQLServer and Access (from Microsoft). In addition, several open source systems, such as

MySQL and PostgreSQL, are available.

1.1 The Relational Model Concepts:
The relational model represents the database as a collection of relations. Informally, each

relation resembles a table of values or, to some extent, a flat file of records. It is called a flat

file because each record has a simple linear or flat structure.

When a relation is thought of as a table of values, each row in the table represents a collection

of related data values. A row represents a fact that typically corresponds to a real-world entity

or relationship. The table name and column names are used to help to interpret the meaning

of the values in each row.

Example: In STUDENT relation because each row represents facts about a particular student

entity. The column names Name, Student_number, Class, and Major specify how to interpret

the data values in each row, based on the column each value is in. All values in a column are

of the same data type.

In the formal relational model terminology, a row is called a tuple, a column header is called

an attribute, and the table is called a relation. The data type describing the types of values that

can appear in each column is represented by a domain of possible values.

1.1.1 Domains, Attributes, Tuples, and Relations

Domain:

V.RASHMI (Assistant Professor) PVPSIT IT 1

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

A domain D is a set of atomic values. By atomic we mean that each value in the domain is

invisible as far as the formal relational model is concerned. A common method of specifying

a domain is to specify a data type from which the data values forming the domain are drawn.

It is also useful to specify the name for the domain, to help in interpreting its values.

Some examples of domains follow:

• Usa_phone_numbers: The set of ten-difgit phone numbers valid in United States.
• Social_security_numbers: The set of valid nine-digit social security numbers.
• Names: The set of character strings that represents the names of persons.
• Employee_ages: Possible ages of employees in a company; each must be an

integer value between 15 and 80.

The preceding are called logical definitions of domains. A data type or format is also

specified for each domain. For example, the data type for the domain Usa_phone_numbers

can be declared as a character string of the form (ddd)ddddddd, where each d is a numeric

(decimal) digit and the first three digits form a valid telephone area code. The data type for

Employee_ages is an integer number between 15 and 80.

Attribute:

An attribute Ai is the name of a role played by some domain D in the relation schema R. D

is called the domain of Ai and is denoted by dom(Ai).

Tuple:

Mapping from attributes to values drawn from the respective domains of those attributes.
Tuples are intended to describe some entity (or relationship between entities) in the miniworld

Example: a tuple for a PERSON entity might be

{ Name -- ”smith”, Gender--> Male, Age --> 25 }

Relation:

A named set of tuples all of the same form i.e., having the same set of attributes.

Relation schema:

A relation schema R, denoted by R(A1, A2, ...,An), is made up of a relation name R and a list

of attributes A1, A2, ...,An. Each attribute Ai is the name of a role played by some domain D in

the relation schema R. D is called the domain of Ai and is denoted by dom(Ai). A relation

schema is used to describe a relation; R is called the name of this relation.

V.RASHMI (Assistant Professor) PVPSIT IT 2

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

The degree (or arity) of a relation is the number of attributes n of its relation schema. A

relation of degree seven, which stores information about university students,would contain

seven attributes describing each student as follows:

STUDENT(Name, Ssn, Home_phone, Address, Office_phone, Age, Gpa)

Using the data type of each attribute, the definition is sometimes written as:

STUDENT(Name: string, Ssn: string, Home_phone: string, Address: string,
Office_phone: string, Age: integer, Gpa: real)

Domains for some of the attributes of the STUDENT relation:

dom(Name) = Names;

dom(Ssn) = Social_security_numbers;

dom(HomePhone) =USA_phone_numbers,

dom(Office_phone) = USA_phone_numbers,

Relation (or relation state):

A relation (or relation state) r of the relation schema by R(A1, A2, ...,An), also denoted by r(R),

is a set of n-tuples r = {t1, t2, ..., tm}. Each n-tuple t is an ordered list of n values t =<v1, v2,
..., vn where each value vi ≤ i ≤ n is an element of dom(Ai) or is a special NULL value. The

i
th

 value in tuple t, which corresponds to the attribute Ai, is referred to as t[Ai] or t. Ai.

The terms relation intension for the schema R and relation extension for a relation state r(R)

are also commonly used.

1.1.2 Characteristics of Relations

1) Ordering of Tuples in a Relation

A relation is defined as a set of tuples. Mathematically, elements of a set have no order

among them; hence, tuples in a relation do not have any particular order. Tuple ordering

V.RASHMI (Assistant Professor) PVPSIT IT 3

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

is not part of a relation definition because a relation attempts to represent facts at a

logical or abstract level. Many tuple orders can be specified on the same relation.

2) Ordering of Values within a Tuple and an Alternative Definition of a Relation

The order of attributes and their values is not that important as long as the

correspondence between attributes and values is maintained. An alternative definition

of a relation can be given, making the ordering of values in a tuple unnecessary. In

this definition A relation schema R(A1, A2, ...,An), set of attributes and a relation state

r(R) is a finite set of mappings r = {t1, t2, ..., tm}, where each tuple ti is a mapping

from R to D.

According to this definition of tuple as a mapping, a tuple can be considered as a set

of (<attribute>, <value>) pairs, where each pair gives the value of the mapping from

an attribute Ai to a value vi from dom(Ai) .The ordering of attributes is not important,

because the attribute name appears with its value.

3) Values and NULLs in the Tuples

Each value in a tuple is atomic. NULL values are used to represent the values of

attributes that may be unknown or may not apply to a tuple. For example some

STUDENT tuples have NULL for their office phones because they do not have an

office .Another student has a NULL for home phone In general, we can have several

meanings for NULL values, such as value unknown, value exists but is not available,

or attribute does not apply to this tuple (also known as value undefined).

4) Interpretation (Meaning) of a Relation

The relation schema can be interpreted as a declaration or a type of assertion. For

example, the schema of the STUDENT relation of asserts that, in general, a student

entity has a Name, Ssn, Home_phone, Address, Office_phone, Age, and Gpa. Each

tuple in the relation can then be interpreted as a particular instance of the assertion.For

example, the first tuple asserts the fact that there is a STUDENT whose Name is

Benjamin Bayer, Ssn is 305-61-2435, Age is 19, and so on.

V.RASHMI (Assistant Professor) PVPSIT IT 4

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

An alternative interpretation of a relation schema is as a predicate; in this case, the

values in each tuple are interpreted as values that satisfy the predicate.

1.1.3 Relational Model Notation
▪ Relation schema R of degree n is denoted by by R(A1, A2, ...,An)

▪ Uppercase letters Q, R, S denote relation names

▪ Lowercase letters q, r, s denote relation states

▪ Letters t, u, v denote tuples

▪ In general, the name of a relation schema such as STUDENT also indicates the current set
of tuples in that relation

▪ An attribute A can be qualified with the relation name R to which it belongs by using the
dot notation R.A for example, STUDENT.Name or STUDENT.Age

▪ An n-tuple t in a relation r(R) is denoted by t = <v1, v2, ..., vn>, where vi is the
value corresponding to attribute Ai. The following notation refers to component
values of tuples: Both t[Ai] and t.Ai (and sometimes t[i]) refer to the value vi in t
for attribute Ai.

▪ Both t[Au, Aw, ..., Az] and t.(Au, Aw, ..., Az), where Au, Aw, ..., Az is a list of
attributes from R, refer to the subtuple of values <vu, vw, ..., vz> from t
corresponding to the attributes specified in the list.

1.2 Relational Model Constraints and Relational Database Schemas:

Constraints are restrictions on the actual values in a database state. These constraints are

derived from the rules in the miniworld that the database represents. Constraints on databases

can generally be divided into three main categories:

1) Inherent model-based constraints or implicit constraints
• Constraints that are inherent in the data model.
• The characteristics of relations are the inherent constraints of the relational model

and belong to the first category. For example, the constraint that a relation cannot

have duplicate tuples is an inherent constraint.
2) Schema-based constraints or explicit constraints

• Constraints that can be directly expressed in schemas of the data model, typically
by specifying them in the DDL.

• The schema-based constraints include domain constraints, key constraints,

constraints on NULLs, entity integrity constraints, and referential integrity

constraints.
3) Application-based or semantic constraints or business rules

• Constraints that cannot be directly expressed in the schemas of the data model,
and hence must be expressed and enforced by the application programs.

• Examples of such constraints are the salary of an employee should not exceed the

salary of the employee, supervisor and the maximum number of hours an

employee can work on all projects per week is 56.

1.2.1 Domain Constraints
Domain Constraints specify that within each tuple, the value of each attribute A must be an

atomic value from the domain dom(A). The data types associated with domains typically include

standard numeric data types for integers (such as short integer, integer, and long integer) and real

numbers (float and doubleprecision float). Characters, Booleans, fixed-length

V.RASHMI (Assistant Professor) PVPSIT IT 5

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

strings, and variable-length strings are also available, as are date, time, timestamp, and

money, or other special data types.

1.2.2 Key Constraints and Constraints on NULL Values

A key is a set of one or more attributes that can uniquely identify each row in a table. A key

not only identifies the rows of a table but also relates two or more tables.

Different Types of Keys:

1) Super Key
2) Candidate Key
3) Primary Key
4) Foreign Key
5) Secondary Key/Alternate Key
6) Unique Key
7) Composite Key
8) Surrogate Key
9) Partial Key

1) Super Key: Super Key is an attribute (or a set of attributes) that uniquely identify a

tuple i.e. an entity in entity set.
It is a superset of Candidate Key, since Candidate Keys are selected from super key.
Example:

V.RASHMI (Assistant Professor) PVPSIT IT 6

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Super Keys are:

Candidate Keys are:

2) Candidate Key: Each table has only a single primary key. Each relation may have

one or more candidate key. One of these candidate key is called Primary Key. Each

candidate key qualifies for Primary Key. Therefore candidates for Primary Key is

called Candidate Key.
Candidate key can be a single column or combination of more than one column. A

minimal super key is called a candidate key.
Example:

Above, Student_ID, Student_Enroll and Student_Email are the candidate keys. They

are considered candidate keys since they can uniquely identify the student record.
3) Primary Key: It is an attribute or set of attributes that uniquely identify an entity

(row) in the entity set (table). The main difference between the primary key and the

candidate key in that is primary key does not contain NULL values.
✓ Primary Key must be UNIQUE and NOT NULL.

Example:

The primary key of the relation can be EID.

V.RASHMI (Assistant Professor) PVPSIT IT 7

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

4) Foreign Key: A foreign key is a set of attributes in a table that refers to the primary

key of another table. The foreign key links these two tables.
Example:

5) Secondary Key/Alternalte Key: A primary key is the field in a database that is the

primary key used to uniquely identify a record in a database. A secondary key is an

additional key, or alternate key, which can be use in addition to the primary key to

locate specific data.
Secondary Key is the key that has not been selected to be the primary key. However,

it is considered a candidate key for the primary key.
Therefore, a candidate key not selected as a primary key is called secondary key.

Candidate key is an attribute or set of attributes that you can consider as a Primary

key. Note: Secondary Key is not a Foreign Key.
Example 1:

Above, Student_ID, Student_Enroll and Student_Email are the candidate keys. They

are considered candidate keys since they can uniquely identify the student record.

Select any one of the candidate key as the primary key. Rest of the two keys would be

Secondary Key.
If you selected Student_ID as primary key, therefore Student_Enroll and

Student_Email will be Secondary Key (candidates of primary key).
Example 2:

V.RASHMI (Assistant Professor) PVPSIT IT 8

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Above, Employee_ID, Employee_No and Employee_Email are the candidate keys.

They uniquely identify the Employee record. Select any one of the candidate key as

the primary key. Rest of the two keys would be Secondary Key.

6) Unique Key: A Unique Key is used to prevent duplicate values in a column. Primary

Key provided uniqueness to a table.
A primary key cannot accept NULL values; this makes Primary Key different from

Unique Key, since Unique Key allows one value as NULL value.
A table can only have a single Primary Key, whereas a Unique Key can be more than

one if you need it in the table.
Unique Key ensures that data is not duplicated in two rows in the database. A row in

the database can have null in case of Unique Key.
You cannot modify a Primary Key, but a Unique Key can be modified.

7) Composite Key: A primary key having two or more attributes is called composite

key. It is a combination of two or more columns.
Example 1: Here our composite key is OrderID and ProductID −
{OrderID, ProductID}

Example 2:

Above, our composite keys are StudentID and StudentEnrollNo. The table has two

attributes as primary key.

Therefore, the Primary Key consisting of two or more attribute is called Composite

Key.

8) Surrogate Key: A Surrogate Key’s only purpose is to be a unique identifier in a

database, for example, incremental key.
Surrogate Key has no actual meaning and is used to represent existence. It has an

existence only for data analysis.
Example: The surrogate key is

Key in the <ProductPrice> table.

V.RASHMI (Assistant Professor) PVPSIT IT 9

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Other examples of a Surrogate Key:
✓ Counter

✓ System date/time stamp

✓ Random alphanumeric string.

9) Partial Key: Partial key is a key using which all the records of the table can not be

identified uniquely.
However, a bunch of related tuples can be selected from the table using the partial

key. Example: Consider the following schema-
Department (Emp_no , Dependent_name , Relation)

Here, using partial key Emp_no, we can not identify a tuple uniquely but we can

select a bunch of tuples from the table

V.RASHMI (Assistant Professor) PVPSIT IT 10

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

All tuples in a relation must also be distinct. This means that no two tuples can have the same

combination of values for all their attributes. There are other subsets of attributes of a relation

schema R with the property that no two tuples in any relation state r of R should have the

same combination of values for these attributes.

Suppose that we denote one such subset of attributes by SK; then for any two distinct tuples t1
and t2 in a relation state r of R, we have the constraint that: t1 t2[SK] . such set of attributes SK

is called a superkey of the relation schema R

Superkey

A superkey SK specifies a uniqueness constraint that no two distinct tuples in any state r of R

can have the same value for SK. Every relation has at least one default superkey the set of all

its attributes.

Key

A key K of a relation schema R is a superkey of R with the additional property that removing

any attribute A from K leaves a set of attributes K that is not a superkey of R anymore.

Hence, a key satisfies two properties:

V.RASHMI (Assistant Professor) PVPSIT IT 11

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

1. Two distinct tuples in any state of the relation cannot have identical values for (all)

the attributes in the key. This first property also applies to a superkey.
2. It is a minimal superkey that is, a superkey from which we cannot remove any

attributes and still have the uniqueness constraint in condition will hold.This property

is not required by a superkey.

Example: Consider the STUDENT relation

• The attribute set {Ssn} is a key of STUDENT because no two student tuples can have

the same value for Ssn.
• Any set of attributes that includes Ssn for example, {Ssn, Name, Age} is a superkey.
• The superkey {Ssn, Name, Age} is not a key of STUDENT because removing Name

or Age or both from the set still leaves us with a superkey.

In general, any superkey formed from a single attribute is also a key. A key with multiple

attributes must require all its attributes together to have the uniqueness property.

Candidate Key

A relation schema may have more than one key. In this case, each of the keys is called a

candidate key.

Example: The CAR relation has two candidate keys: License_number and

Engine_serial_number

Primary Key

It is common to designate one of the candidate keys as the primary key of the relation. This is

the candidate key whose values are used to identify tuples in the relation. We use the

convention that the attributes that form the primary key of a relation schema are underlined.

Other candidate keys are designated as unique keys and are not underlined.

V.RASHMI (Assistant Professor) PVPSIT IT 12

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Another constraint on attributes specifies whether NULL values are or are not permitted. For

example, if every STUDENT tuple must have a valid, non-NULL value for the Name

attribute, then Name of STUDENT is constrained to be NOT NULL.

1.2.3 Relational Databases and Relational Database Schemas

Relational database schema S is a set of relation schemas S = {R1, R2, ..., Rm} and a s et of

integrity constraints IC.

Example of relational database schema:

COMPANY = {EMPLOYEE, DEPARTMENT, DEPT_LOCATIONS, PROJECT,

WORKS_ON, DEPENDENT}

Figure: Schema diagram for the COMPANY relational database schema. The underlined

attributes represent primary keys

A Relational database state is a set of relation states DB = {r1, r2, ..., rm}.Each ri is a state of R

and such that the ri relation states satisfy integrity constraints specified in IC.

V.RASHMI (Assistant Professor) PVPSIT IT 13

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Figure: One possible database state for the COMPANY relational database schema.

A database state that does not obey all the integrity constraints is called Invalid state and a

state that satisfies all the constraints in the defined set of integrity constraints IC is called a

Valid state.

Attributes that represent the same real-world concept may or may not have identical names in

different relations.

Example: The Dnumber attribute in both DEPARTMENT and DEPT_LOCATIONS stands

for the same real-world concept the number given to a department.

V.RASHMI (Assistant Professor) PVPSIT IT 14

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

That same concept is called Dno in EMPLOYEE and Dnum in PROJECT.

Alternatively, attributes that represent different concepts may have the same name in

different relations. For example, we could have used the attribute name Name for both Pname

of PROJECT and Dname of DEPARTMENT; in this case, we would have two attributes that

share the same name but represent different real world concepts project names and

department names.

1.2.4 Integrity, Referential Integrity, and Foreign Keys

Integrity Constraints

✓ Integrity constraints are a set of rules. It is used to maintain the quality of information.

✓ Integrity constraints ensure that the data insertion, updating, and other processes have to be
performed in such a way that data integrity is not affected.

✓ Thus, integrity constraint is used to guard against accidental damage to the database. Types of
Integrity Constraint

Types of Integrity Constraint

1) Domain Constraints:
✓ Domain constraints can be defined as the definition of a valid set of values for an

attribute.

✓ The data type of domain includes string, character, integer, time, date, currency, etc. The
value of the attribute must be available in the corresponding domain.

Example:

2) Entity integrity constraints
✓ The entity integrity constraint states that primary key value can't be null.

✓ This is because the primary key value is used to identify individual rows in relation and if
the primary key has a null value, then we can't identify those rows.

✓ A table can contain a null value other than the primary key field.

V.RASHMI (Assistant Professor) PVPSIT IT 15

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Example:

3) Referential Integrity Constraints
✓ A referential integrity constraint is specified between two tables.

✓ In the Referential integrity constraints, if a foreign key in Table 1 refers to the
Primary Key of Table 2, then every value of the Foreign Key in Table 1 must be
null or be available in Table 2.

Example:

Referential integrity constraint

The referential integrity constraint is specified between two relations and is used to

maintain the consistency among tuples in the two relations. Informally, the referential

integrity constraint states that a tuple in one relation that refers to another relation

must refer to an existing tuple in that relation.

V.RASHMI (Assistant Professor) PVPSIT IT 16

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Example: COMPANY database, the attribute Dno of EMPLOYEE gives the

department number for which each employee works; hence, its value in every

EMPLOYEE tuple must match the Dnumber value of some tuple in the

DEPARTMENT relation.

To define referential integrity more formally, first we define the concept of a foreign

key. The conditions for a foreign key, given below, specify a referential integrity

constraint between the two relation schemas R1 and R2.

A set of attributes FK in relation schema R1 is a foreign key of R1 that references relation

R2 if it satisfies the following rules:

1. Attributes in FK have the same domain(s) as the primary key attributes PK of R2;

the attributes FK are said to reference or refer to the relation R2.
2. A value of FK in a tuple t1 of the current state r1(R1) either occurs as a value of PK

for some tuple t2 in the current state r2(R2) or is NULL.

In the former case, we have t1[FK] = t2[PK], and we say that the tuple t1 references or

refers to the tuple t2.

In this definition, R1 is called the referencing relation and R2 is the referenced relation.

If these two conditions hold, a referential integrity constraint from R1 to R2 is said to

hold.

4) Key constraints
✓ Keys are the entity set that is used to identify an entity within its entity set uniquely.

✓ An entity set can have multiple keys, but out of which one key will be the primary key. A
primary key can contain a unique and null value in the relational table.

Example:

1.2.5 Other Types of Constraints

1) Semantic Integrity Constraints:

Semantic integrity constraints can be specified and enforced within the application programs

that update the database, or by using a general-purpose constraint specification language.

Examples of such constraints are the salary of an employee should not exceed the salary of

the employee’s supervisor and the maximum number of hours an employee can work on all

projects per week is 56. Mechanisms called triggers and assertions can be used. In SQL,

CREATE ASSERTION and CREATE TRIGGER statements can be used for this purpose.

V.RASHMI (Assistant Professor) PVPSIT IT 17

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

2) Functional Dependency Constraints:

Functional dependency constraint establishes a functional relationship among two sets of

attributes X and Y. This constraint specifies that the value of X determines a unique value of

Y in all states of a relation; it is denoted as a functional dependency X Y. We use

functional dependencies and other types of dependencies as tools to analyze the quality of

relational design and to normalize relations to improve their quality.

State constraints (static constraints)

Define the constraints that a valid state of the database must satisfy

Transition constraints (dynamic constraints)

Define to deal with state changes in the database

2. SQL

Introduction:

SQL was called SEQUEL (Structured English Query Language) and was designed and

implemented at IBM Research.The SQL language may be considered one of the major

reasons for the commercial success of relational databases. SQL is a comprehensive database

language. It has statements for data definitions, queries, and updates. Hence, it is both a DDL

and a DML. In addition, it has facilities for defining views on the database, for specifying

security and authorization, for defining integrity constraints, and for specifying transaction

controls. It also has rules for embedding SQL statements into a general-purpose programming

language such as Java, COBOL, or C/C++.

2.1 Data Definition

SQL uses the terms table, row, and column for the formal relational model terms relation,

tuple, and attribute, respectively. The main SQL command for data definition is the CREATE

statement, which can be used to create schemas, tables (relations), domains, views, assertions

and triggers.

2.1.1 Schema and Catalog Concepts in SQL

An SQL schema is identified by a schema name, and includes an authorization identifier to

indicate the user or account who owns the schema, as well as descriptors for each element in

the schema. Schema elements include tables, constraints, views, domains, and other

constructs (such as authorization grants) that describe the schema. A schema is created via

the CREATE SCHEMA statement.

Example: The following statement creates a schema called COMPANY, owned by the user

with authorization identifier ‘Jsmith’.

CREATE SCHEMA COMPANY AUTHORIZATION Jsmith;

In general, not all users are authorized to create schemas and schema elements. The privilege

to create schemas, tables, and other constructs must be explicitly granted to the relevant user

accounts by the system administrator or DBA.

SQL uses the concept of a catalog a named collection of schemas in an SQL environment. A

catalog always contains a special schema called INFORMATION_SCHEMA, which provides

V.RASHMI (Assistant Professor) PVPSIT IT 18

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

information on all the schemas in the catalog and all the element descriptors in these schemas.

Integrity constraints such as referential integrity can be defined between relations only if they

exist in schemas within the same catalog. Schemas within the same catalog can also share

certain elements, such as domain definitions.

2.1.2 The CREATE TABLE Command in SQL

The CREATE TABLE command is used to specify a new relation by giving it a name and

specifying its attributes and initial constraints. The attributes are specified first, and each

attribute is given a name, a data type to specify its domain of values, and any attribute

constraints, such as NOT NULL. The key, entity integrity, and referential integrity

constraints can be specified within the CREATE TABLE statement after the attributes are

declared, or they can be added later using the ALTER TABLE command.

Typically, the SQL schema in which the relations are declared is implicitly specified in the

environment in which the CREATE TABLE statements are executed. Alternatively, we can

explicitly attach the schema name to the relation name, separated by a period. For example, by

writing

CREATE TABLE COMPANY.EMPLOYEE …

rather than

CREATE TABLE EMPLOYEE …

The relations declared through CREATE TABLE statements are called base tables.

Examples:

V.RASHMI (Assistant Professor) PVPSIT IT 19

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

2.1.3 Attribute Data Types and Domains in SQL

Basic Data Types

1) Numeric Data Types includes
• integer numbers of various sizes (INTEGER or INT, and SMALLINT
• floating-point (real) numbers of various precision (FLOAT or REAL, and DOUBLE

PRECISION).

• Formatted numbers can be declared by using

DECIMAL(i,j) or DEC(i,j) or NUMERIC(i,j)

Where i - precision, total number of decimal digits

V.RASHMI (Assistant Professor) PVPSIT IT 20

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

j - scale, number of digits after the decimal point

2) Character String Data Types

• fixed length CHAR(n) or CHARACTER(n), where n is the number of characters
• varying length VARCHAR(n) or CHAR VARYING(n) or CHARACTER

VARYING(n), where n is the maximum number of characters
• When specifying a literal string value, it is placed between single quotation marks

(apostrophes), and it is case sensitive

For fixed length strings, a shorter string is padded with blank characters to the right

• Example: If the value ‘Smith’ is for the attribute of type CHAR(10), it is padded with
five blank characters to become ‘Smith’ if needed.

• Padded blanks are generally ignored when strings are compared.
• Another variable-length string data type called CHARACTER LARGE OBJECT or

CLOB is also available to specify columns that have large text values, such as

documents.
• The CLOB maximum length can be specified in kilobytes (K), megabytes (M), or

gigabytes (G).
• Example: CLOB(20M) specifies a maximum length of 20 megabytes.

3) Bit-string data types are either of

• Fixed length n BIT(n) or varying length BIT VARYING(n), where n is the maximum
number of bits.

• The default for n, the length of a character string or bit string, is 1.
• Literal bit strings are placed between single quotes but preceded by a B to distinguish

them from character strings; Example: B’10101’
• Another variable-length bitstring data type called BINARY LARGE OBJECT or

BLOB is also available to specify columns that have large binary values, such as

images.
• The maximum length of a BLOB can be specified in kilobits (K), megabits (M), or

gigabits (G)
• Example: BLOB(30G) specifies a maximum length of 30 gigabits.

4) A Boolean data type has the traditional values of TRUE or FALSE.In SQL, because

of the presence of NULL values, a three-valued logic is used, so a third possible value

for a Boolean data type is UNKNOWN.
5) The DATE data type has ten positions, and its components are YEAR, MONTH, and

DAY in the form YYYY-MM-DD.
6) The TIME data type has at least eight positions, with the components HOUR,

MINUTE, and SECOND in the form HH:MM:SS.
Only valid dates and times should be allowed by the SQL implementation.

7) TIME WITH TIME ZONE data type includes an additional six positions for

specifying the displacement from the standard universal time zone, which is in the

range +13:00 to 12:59 in units of HOURS:MINUTES. If WITH TIME ZONE is not

included, the default is the local time zone for the SQL session.

Additional Data Types:

V.RASHMI (Assistant Professor) PVPSIT IT 21

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

1) Timestamp data type (TIMESTAMP) includes the DATE and TIME fields, plus a

minimum of six positions for decimal fractions of seconds and an optional WITH

TIME ZONE qualifier.
2) INTERVAL data type. This specifies an interval a relative value that can be used to

increment or decrement an absolute value of a date, time, or timestamp. Intervals are

qualified to be either YEAR/MONTH intervals or DAY/TIME intervals.

It is possible to specify the data type of each attribute directly or a domain can be declared,

and the domain name used with the attribute Specification. This makes it easier to change the

data type for a domain that is used by numerous attributes in a schema, and improves schema

readability. For example, we can create a domain SSN_TYPE by the following statement:

CREATE DOMAIN SSN_TYPE AS CHAR(9);

We can use SSN_TYPE in place of CHAR(9) for the attributes Ssn and Super_ssn of

EMPLOYEE, Mgr_ssn of DEPARTMENT, Essn of WORKS_ON, and Essn of DEPENDENT

2.2 Constraints

Basic constraints that can be specified in SQL as part of table creation:

• Key and referential integrity constraints
• Restrictions on attribute domains and NULLs
• Constraints on individual tuples within a relation

2.2.1 Specifying Attribute Constraints and Attribute Defaults

Because SQL allows NULLs as attribute values, a constraint NOT NULL may be specified if

NULL is not permitted for a particular attribute. This is always implicitly specified for the

attributes that are part of the primary key of each relation, but it can be specified for any other

attributes whose values are required not to be NULL.

It is also possible to define a default value for an attribute by appending the clause

DEFAULT <value> to an attribute definition. The default value is included in any new tuple

if an explicit value is not provided for that attribute.

CREATE TABLE DEPARTMENT

(...,

Mgr_ssn CHAR(9) NOT NULL DEFAULT ‘888665555’,

)

Another type of constraint can restrict attribute or domain values using the CHECK clause

following an attribute or domain definition . For example, suppose that department numbers

are restricted to integer numbers between 1 and 20; then, we can change the attribute

declaration of Dnumber in the DEPARTMENT table to the following:

Dnumber INT NOT NULL CHECK (Dnumber > 0 AND Dnumber < 21);

V.RASHMI (Assistant Professor) PVPSIT IT 22

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

The CHECK clause can also be used in conjunction with the CREATE DOMAIN

statement.For example, we can write the following statement:

CREATE DOMAIN D_NUM AS INTEGER

CHECK (D_NUM > 0 AND D_NUM < 21);

We can then use the created domain D_NUM as the attribute type for all attributes that refer

to department number such as Dnumber of DEPARTMENT, Dnum of PROJECT, Dno of

EMPLOYEE, and so on.

2.2.2 Specifying Key and Referential Integrity Constraints

The PRIMARY KEY clause specifies one or more attributes that make up the primary key

of a relation. If a primary key has a single attribute, the clause can follow the attribute

directly. For example, the primary key of DEPARTMENT can be specified as:

Dnumber INT PRIMARY KEY;

The UNIQUE clause can also be specified directly for a secondary key if the secondary key

is a single attribute, as in the following example:

Dname VARCHAR(15) UNIQUE;

Referential integrity is specified via the FOREIGN KEY clause

FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(ssn),

FOREIGN KEY (Dno) REFERENCES DEPARTMENT(Dnumber)

A referential integrity constraint can be violated when tuples are inserted or deleted, or when

a foreign key or primary key attribute value is modified. The default action that SQL takes

for an integrity violation is to reject the update operation that will cause a violation, which is

known as the RESTRICT option.

The schema designer can specify an alternative action to be taken by attaching a referential

triggered action clause to any foreign key constraint. The options include SET NULL,

CASCADE, and SET DEFAULT. An option must be qualified with either ON DELETE or

ON UPDATE.

▪ FOREIGN KEY(Dno) REFERENCES DEPARTMENT(Dnumber) ON DELETE SET

DEFAULT ON UPDATE CASCADE

▪ FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn) ON DELETE SET NULL
ON UPDATE CASCADE

▪ FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber) ON DELETE
CASCADE ON UPDATE CASCADE

In general, the action taken by the DBMS for SET NULL or SET DEFAULT is the same for

both ON DELETE and ON UPDATE: The value of the affected referencing attributes is

changed to NULL for SET NULL and to the specified default value of the referencing

attribute for SET DEFAULT.

The action for CASCADE ON DELETE is to delete all the referencing tuples whereas the

action for CASCADE ON UPDATE is to change the value of the referencing foreign key

V.RASHMI (Assistant Professor) PVPSIT IT 23

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

attribute(s) to the updated (new) primary key value for all the referencing tuples. It is the

responsibility of the database designer to choose the appropriate action and to specify it in the

database schema. As a general rule, the CASCADE option is suitable for “relationship”

relation such as WORKS ON: for relations that represent multivalued attributes, such as

DEPT_LOCATIONS; and for relations that represent weak entity types, such as

DEPENDENT.

2.2.3 Giving Names to Constraints

The names of all constraints within a particular schema must be unique. A constraint name is

used to identify a particular constraint in case the constraint must be dropped later and

replaced with another constraint.

2.2.4 Specifying Constraints on Tuples Using CHECK
In addition to key and referential integrity constraints, which are specified by special keywords,

other table constraints can be specified through additional CHECK clauses at the end of a

CREATE TABLE statement. These can be called tuple-based constraints because they apply to

each tuple individually and are checked whenever a tuple is inserted or modified

For example, suppose that the DEPARTMENT table had an additional attribute

Dept_create_date, which stores the date when the department was created. Then we could

add the following CHECK clause at the end of the CREATE TABLE statement for the

DEPARTMENT table to make sure that the managers start date is later than the department

creation date.

CHECK (Dept_create_date <= Mgr_start_date);

2.3 Basic Queries for Retrival in SQL

SQL has one basic statement for retrieving information from a database: the SELECT

statement.

2.3.1 The SELECT-FROM-WHERE Structure of Basic SQL Queries

The basic form of the SELECT statement, sometimes called a mapping or a select-from-

where block, is formed of the three clauses SELECT, FROM, and WHERE and has the

following form:

SELECT <attribute list>

FROM <table list>

WHERE <condition>;

Where,

• <attribute list> is a list of attribute names whose values are to be retrieved by the query
• <table list> is a list of the relation names required to process the query
• <condition> is a conditionnal (Boolean) expression that identifies the tuples to be

retrieved by the query

Examples:

1) Retrieve date of birth and the address of the employee(s) whose name is ‘John

B.Smith’. SELECT Bdate, Address

V.RASHMI (Assistant Professor) PVPSIT IT 24

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

FROM EMPLOYEE
WHERE Fname=’John’ AND Minit=’B’ AND Lname=’Smith’;

The SELECT clause of SQL specifies the attributes whose values are to be retrieved,

which are called the projection attributes. The WHERE clause specifies the Boolean

condition that must be true for any retrieved tuple, which is known as the selection

condition.

2) Retrieve the name and address of all employees who work for the ‘Research’

department.
SELECT Fname, Lname, Address
FROM EMPLOYEE, DEPARTMENT
WHERE Dname=’Reaearch’ AND Dnumber=Dno;

In the WHERE clause, the condition Dname=’Reaearch’ is a selection condition that

chooses the particular tuple of interest in the DEPARTMENT table, because Dname is

an attribute of DEPARTMENT. The condition Dnumber = Dno is called a join

condition, because it combines two tuples: one from DEPARTMENT and one from

EMPLOYEE, whenever the value of Dnumber in DEPARTMENT is equal to

thevalue of Dno in EMPLOYEE.A query that involves only selection and join

conditions plus projection attributes is known as a select-project-join query.

3) For every project located in ‘Stafford’, list the project number, the controlling

department number, and the department manager’s last name, address and birth date.
SELECT Pnumber, Dnum, Lname, Address, Bdate
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE Dname=Dnumber AND Mgr_Ssn=Ssn AND Plocation=’Stafford’;

The join condition Dnum = Dnumber relates a project tuple to its controlling

department tuple, whereas the join condition Mgr_ssn = Ssn relates the controlling

department tuple to the employee tuple who manages that department. Each tuple in

the result will be a combination of one project, one department, and one employee

that satisfies the join conditions. The projection attributes are used to choose the

attributes to be displayed from each combined tuple.

2.3.2 Ambiguous Attribute Names, Aliasing, Renaming and Tuple Variables

In SQL, the same name can be used for two or more attributes as long as the attributes are in

different relations. If this is the case, and a multitable query refers to two or more attributes

with the same name, we must qualify the attribute name with the relation name to prevent

ambiguity. This is done by prefixing the relation name to the attribute name and separating

the two by a period.

Example: Retrieve the name and address of all employees who work for the ‘Research’

department

SELECT Fname, EMPLOYEE.Name, Address

FROM EMPLOYEE, DEPARTMENT

WHERE DEPARTMENT.Name=’Research’ AND

DEPARTMENT.Dnumber=EMPLOYEE.Dnumber;

V.RASHMI (Assistant Professor) PVPSIT IT 25

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

The ambiguity of attribute names also arises in the case of queries that refer to the same

relation twice. For example consider the query: For each employee retrieve them employee’s

first and last name and the first and last name of his or her immediate supervisor.

SELECT E.Fname, E.Lname, S.Fname, S.Lname

FROM EMPLOYEE AS E, EMPLOYEE AS S

WHERE E.Super_ssn=S.Ssn;

In this case, we are required to declare alternative relation names E and S, called aliases or

tuple variables, for the EMPLOYEE relation. An alias can follow the keyword AS, or it can

directly follow the relation name for example, by writing EMPLOYEE E, EMPLOYEE S. It

is also possible to rename the relation attributes within the query in SQL by giving them

aliases. For example, if we write

EMPLOYEE AS E(Fn, Mi, Ln, Ssn, Bd, Addr, Sex, Sal, Sssn, Dno)

in the FROM clause, Fn becomes an alias for Fname, Mi for Minit, Ln for Lname, and so on.

2.3.3 Unspecified WHERE Clause and Use of the Asterisk

A missing WHERE clause indicates no condition on tuple selection; hence, all tuples of the

relation specified in the FROM clause qualify and are selected for the query result.If more

than one relation is specified in the FROM clause and there is no WHERE clause, then the

CROSS PRODUCT all possible tuple combinations of these relations is selected.

Example: Select all EMPLOYEE Ssns and all combinations of EMPLOYEE Ssn and

DEPARTMENT Dname in the database.

SELECT Ssn

FROM EMPLOYEE;

SELECT Ssn, Dname

FROM EMPLOYEE, DEPARTMENT;

To retrieve all the attribute values of the selected tuples, we do not have to list the attribute

names explicitly in SQL; we just specify an asterisk (*), which stands for all the attributes.

For example, the following query retrieves all the attribute values of any EMPLOYEE who

works in DEPARTMENT number 5

SELECT * FROM EMPLOYEE WHERE Dno=5;

SELECT * FROM EMPLOYEE, DEPARTMENT WHERE Dname=’Research’

AND Dno=Dnumber;

SELECT * FROM EMPLOYEE, DEPARTMENT;

2.3.4 Tables as Sets in SQL

SQL usually treats a table not as a set but rather as a multiset; duplicate tuples can appear

more than once in a table, and in the result of a query. SQL does not automatically eliminate

duplicate tuples in the results of queries, for the following reasons:

V.RASHMI (Assistant Professor) PVPSIT IT 26

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

• Duplicate elimination is an expensive operation. One way to implement it is to sort
the tuples first and then eliminate duplicates.

• The user may want to see duplicate tuples in the result of a query.
• When an aggregate function is applied to tuples, in most cases we do not want to

eliminate duplicates.

If we do want to eliminate duplicate tuples from the result of an SQL query, we use the keyword

DISTINCT in the SELECT clause, meaning that only distinct tuples should remain in the result.

Example : Retrieve the salary of every employee and all distinct salary values

(a) SELECT ALL Salary FROM EMPLOYEE;

(b) SELECT DISTINCT Salary FROM EMPLOYEE;

SQL has directly incorporated some of the set operations from mathematical set theory,
which are also part of relational algebra. There are
✓ set union (UNION)

✓ set difference (EXCEPT) and

✓ set intersection (INTERSECT)

The relations resulting from these set operations are sets of tuples; that is, duplicate tuples are
eliminated from the result. These set operations apply only to union-compatible relations, so
we must make sure that the two relations on which we apply the operation have the same
attributes and that the attributes appear in the same order in both relations.

Example: Make a list of all project numbers for projects that involve an employee whose last
name is ‘Smith’ either as a worker or as a manager of the department that controls the project

(SELECT DISTINCT Pnumber FROM PROJECT, DEPARTMENT,

EMPLOYEE WHERE Dnum=Dnumber AND Mgr_ssn=Ssn AND

UNION

(SELECT DISTINCT Pnumber FROM PROJECT, WORKS_ON, EMPLOYEE WHERE
Pnumber=Pno AND Essn=Ssn AND Lname=’Smith’);

V.RASHMI (Assistant Professor) PVPSIT IT 27

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

2.3.5 Substring Pattern Matching and

Arithmetic Operators several more features of SQL

The first feature allows comparison conditions on only parts of a character string, using the

LIKE comparison operator. This can be used for string pattern matching. Partial strings are

specified using two reserved characters:

➢ % replaces an arbitrary number of zero or more

➢ characters _ (underscore) replaces a single character

For example, consider the following query: Retrieve all employees whose address is in

Houston, Texas

SELECT Fname, Lname FROM EMPLOYEE WHERE Address

LIKE ‘%HoustonTX%’;

To retrieve all employees who were born during the 1950s, we can use Query

SELECT Fname, Lname FROM EMPLOYEE

WHERE Bdate LIKE ‘_ _5_ _ _ _ _ _ _’;

If an underscore or % is needed as a literal character in the string, the character should be

preceded by an escape character, which is specified after the string using the keyword

ESCAPE.

Example:

‘AB_CD\%EF’ ESCAPE ‘\’ represents the lateral string, AB_CD%EF because \ is specified

as the escape character. Also, we need a rule to specify apostrophes (‘’) so that it will not be

interpreted as ending string.

Another feature allows the use of arithmetic in queries. The standard arithmetic operators for

addition (+), subtraction (), multiplication (*), and division (/) can be applied to numeric

values or attributes with numeric domains. For example, suppose that we want to see the

effect of giving all employees who work on the ‘ProductX’ project a 10 percent raise; we can

issue the following query:

SELECT E.Fname, E.Lname, 1.1 * E.Salary AS Increased_sal FROM EMPLOYEE

AS E, WORKS_ON AS W, PROJECT AS P

WHERE E.Ssn=W.Essn AND W.Pno=P.Pnumber AND P.Pname=’ProductX’;

Example: Retrieve all employees in department 5 whose salary is between $30,000 and

$40,000.

SELECT * FROM EMPLOYEE WHERE (Salary BETWEEN 30000 AND 40000)

AND Dno = 5;

The condition (Salary BETWEEN 30000 AND 40000) is equivalent to the condition ((Salary

>= 30000) AND (Salary <= 40000)).

V.RASHMI (Assistant Professor) PVPSIT IT 28

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

2.3.6 Ordering of Query Results

SQL allows the user to order the tuples in the result of a query by the values of one or more

of the attributes that appear in the query result, by using the ORDER BY clause.

Example: Retrieve a list of employees and the projects they are working on, ordered by

department and, within each department, ordered alphabetically bylast name, then first name.

SELECT D.Dname, E.Lname, E.Fname, P.Pname

FROM DEPARTMENT D, EMPLOYEE E, WORKS_ON W, PROJECT P WHERE

D.Dnumber= E.Dno AND E.Ssn= W.Essn AND W.Pno= P.Pnumber ORDER BY

D.Dname, E.Lname, E.Fname;

The default order is in ascending order of values.We can specify the keyword DESC if we

want to see the result in a descending order of values. The keyword ASC can be used to

specify ascending order explicitly. For example, if we want descending alphabetical order on

Dname and ascending order on Lname, Fname, the ORDER BY clause can be written as

ORDER BY D.Dname DESC, E.Lname ASC, E.Fname ASC

2.4 INSERT, DELETE, and UPDATE Statements in SQL

2.4.1 The INSERT Command

INSERT is used to add a single tuple to a relation. We must specify the relation name and a

list of values for the tuple. The values should be listed in the same order in which the

corresponding attributes were specified in the CREATE TABLE command.

Example:

INSERT INTO EMPLOYEE VALUES (‘Richard’, ‘K’, ‘Marini’, ‘653298653’, ‘1962-

12-30’, ’98 Oak Forest, Katy, TX’, ‘M’, 37000, ‘653298653’, 4);

INSERT INTO EMPLOYEE (Fname, Lname, Dno, Ssn)

VALUES (‘Richard’, ‘Marini’, 4, ‘653298653’);

A second form of the INSERT statement allows the user to specify explicit attribute names

that correspond to the values provided in the INSERT command. The values must include all

attributes with NOT NULL specification and no default value. Attributes with NULL allowed

or DEFAULT values are the ones that can be left out.

A variation of the INSERT command inserts multiple tuples into a relation in conjunction

with creating the relation and loading it with the result of a query. For example, to create a

temporary table that has the employee last name, project name, and hours per week for each

employee working on a project, we can write the statements in U3A and U3B:

U3A: CREATE TABLE WORKS_ON_INFO (

Emp_name VARCHAR(15),

Proj_name VARCHAR(15),

V.RASHMI (Assistant Professor) PVPSIT IT 29

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Hours_per_week DECIMAL(3,1));

U3B: INSERT INTO WORKS_ON_INFO

(Emp_name, Proj_name,Hours_per_week)

SELECT E.Lname, P.Pname, W.Hours

FROM PROJECT P, WORKS_ON W, EMPLOYEE E

WHERE P.Pnumber=W.Pno AND W.Essn=E.Ssn;

A table WORKS_ON_INFO is created by U3A and is loaded with the joined information

retrieved from the database by the query in U3B. We can now query WORKS_ON_INFO as

we would any other relation;

2.4.2 The DELETE Command

The DELETE command removes tuples from a relation. It includes a WHERE clause, similar

to that used in an SQL query, to select the tuples to be deleted. Tuples are explicitly deleted

from only one table at a time. The deletion may propagate to tuples in other relations if

referential triggered actions are specified in the referential integrity constraints of the DDL.

Example:

DELETE FROM EMPLOYEE WHERE Lname=’Brown’;

Depending on the number of tuples selected by the condition in the WHERE clause, zero,

one, or several tuples can be deleted by a single DELETE command. A missing WHERE

clause specifies that all tuples in the relation are to be deleted; however, the table remains in

the database as an empty table.

2.4.3 The UPDATE Command

The UPDATE command is used to modify attribute values of one or more selected Tuples.

An additional SET clause in the UPDATE command specifies the attributes to be modified

and their new values. For example, to change the location and controlling department number

of project number 10 to ‘Bellaire’ and 5, respectively, we use

UPDATE PROJECT SET Plocation=’Bellaire’, Dnum=5 WHERE Pnumber=10;

As in the DELETE command, a WHERE clause in the UPDATE command selects the tuples

to be modified from a single relation. However, updating a primary key value may propagate

to the foreign key values of tuples in other relations if such a referential triggered action is

specified in the referential integrity constraints of the DDL.

Several tuples can be modified with a single UPDATE command. An example is to give all

employees in the ‘Research’ department a 10 percent raise in salary, as shown by the

following query

UPDATE EMPLOYEE

SET Salary = Salary * 1.1

WHERE Dno = 5;

V.RASHMI (Assistant Professor) PVPSIT IT 30

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Each UPDATE command explicitly refers to a single relation only. To modify multiple

relations, we must issue several UPDATE commands.

2.5 SQL Advanced Queries: Assertions, Triggers, and

Views Three-Valued Logic of SQL:

• SQL uses a three-valued logic: besides true and false, the result of logical expressions
can also be unknown.

• SQL’s three valued logic is a consequence of supporting null to mark absent data.
If a null value affects the result of a logical expression, the result is neither true nor

false but unknown.
• The three-valued logic is an integral part of Core SQL and it is followed by every

SQL database. Following are the categories:

I. Comparisons to NULL

II. Logical Operations Involving Unknown

III. General Rule: where, having, when, etc.

I. Comparisons to null:

• The SQL null value basically means “could be anything”. It is therefore impossible to

tell whether a comparison to null is true or false.
• That’s where the third logical value, unknown, comes in. Unknown means “true or

false, depending on the null values”.
• The result of each of the following comparisons is therefore unknown:0

NULL = 1
NULL <> 1

NULL > 1

NULL = NULL
• Nothing equals null.

Not even null equals null because each null could be different.

II. Logical Operations Involving Unknown:

• In logical connections (and, or), unknown behaves like the null value in comparisons:

The result is unknown if it depends on an operand that is unknown.
• The reason is that the result of a logical connection is only unknown if it actually

depends on an operand that is unknown.
• Example:

(NULL = 1) OR (1 = 1)
• Although the comparison to null makes the first operand of the operation unknown, the

total result is still true because or operations are true as soon as any operand is true.
• In the example above you can assume the values 0 and 1 instead of null to make the

result of the first operand false and true respectively.

V.RASHMI (Assistant Professor) PVPSIT IT 31

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

• But the result of the complete expression is true in both cases — it does not depend on
the value you assume for null.

• A similar case applies to the and operator: and connections are false as soon as any

operand is false.
• The result of the following expression is therefore

false: (NULL = 1) AND (0 = 1)
• In all other cases, any unknown operand for not, and, and or causes the logical

operation to return unknown.

III. General Rule: where, having, when, etc.

• It is not enough that a condition is not false.
• The result of the following query is therefore always the empty set:

SELECT col FROM t

WHERE col = NULL

• The result of the equals comparison to null is always unknown. The where clause thus
rejects all rows.

• Use the null predicate to search for null values:

WHERE col IS NULL

• Odd Consequence: not in (null, …) is never true
• Consider this example:

WHERE 1 NOT IN (NULL)
✓ True

✓ Unknown

✓ False

• Two values for null that make the expression true and false respectively. Let’s take 0
and 1.

• For 0, the expressions becomes 1 NOT IN (0), which is true.
• For 1, the expression becomes 1 NOT IN (1), which is clearly false.
• The result of the original expression is therefore unknown, because it changes if null

is replaced by different values.
• Result of not in predicates that contain a null value is never true:

WHERE 1 NOT IN (NULL, 2)
• This expression is again unknown because substituting different values for null (e.g. 0

and 1) still influences the result.
• Not in predicates that contain a null value can be false:

WHERE 1 NOT IN (NULL, 1)
• No matter which value you substitute for the null (0, 1 or any other value) the result is

always false.

V.RASHMI (Assistant Professor) PVPSIT IT 32

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Nested Queries:

In nested queries, a query is written inside a query. The result of inner query is used in execution

of outer query. We will use STUDENT, COURSE, STUDENT_COURSE tables for

understanding nested queries.

STUDENT Table data:

COURSE table data:

STUDENT_COURSE table data:

There are mainly two types of nested queries:

1. Independent Nested Queries
2. Co-related Nested Queries

I. Independent Nested Queries:

• In independent nested queries, query execution starts from innermost query to
outermost queries.

• The execution of inner query is independent of outer query, but the result of inner

query is used in execution of outer query.
• Various operators like IN, NOT IN, ANY, ALL etc are used in writing independent

nested queries.
• IN: If we want to find out S_ID who are enrolled in C_NAME ‘DSA’ or ‘DBMS’, we

can write it with the help of independent nested query and IN operator.
From COURSE table, we can find out C_ID for C_NAME ‘DSA’ or DBMS’ and we

can use these C_IDs for finding S_IDs from STUDENT_COURSE TABLE.

V.RASHMI (Assistant Professor) PVPSIT IT 33

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

• STEP 1: Finding C_ID for C_NAME =’DSA’ or ‘DBMS’
Select C_ID from COURSE where C_NAME = ‘DSA’ or C_NAME = ‘DBMS’

• STEP 2: Using C_ID of step 1 for finding S_ID

Select S_ID from STUDENT_COURSE where C_ID IN

(SELECT C_ID from COURSE where C_NAME = ‘DSA’ or

C_NAME=’DBMS’);

• The inner query will return a set with members C1 and C3 and outer query will return

those S_IDs for which C_ID is equal to any member of set (C1 and C3 in this case).

So, it will return S1, S2 and S4.
• Note: If we want to find out names of STUDENTs who have either enrolled in

‘DSA’ or ‘DBMS’, it can be done as:
Query:

Select S_NAME from STUDENT where S_ID IN (Select

S_ID from STUDENT_COURSE where C_ID IN

(SELECT C_ID from COURSE where

C_NAME=’DSA’ or C_NAME=’DBMS’));

I. Independent Nested Queries:

• NOT IN: If we want to find out S_IDs of STUDENTs who have neither enrolled in
‘DSA’ nor in ‘DBMS’, it can be done as:

Select S_ID from STUDENT where S_ID NOT IN

(Select S_ID from STUDENT_COURSE where C_ID IN

(SELECT C_ID from COURSE where

C_NAME=’DSA’ or C_NAME=’DBMS’));

• The innermost query will return a set with members C1 and C3. Second inner query

will return those S_IDs for which C_ID is equal to any member of set (C1 and C3 in

this case) which are S1, S2 and S4. The outermost query will return those S_IDs

where S_ID is not a member of set (S1, S2 and S4). So it will return S3.

II. Co-related Nested Queries:

• The output of inner query depends on the row which is being currently executed in

outer query.
Example: If we want to find out S_NAME of STUDENTs who are enrolled in C_ID

‘C1’, it can be done with the help of co-related nested query as:
Select S_NAME from STUDENT S where EXISTS
(select * from STUDENT_COURSE SC where S.S_ID=SC.S_ID and
SC.C_ID=’C1’);

• For each row of STUDENT S, it will find the rows from STUDENT_COURSE where
S.S_ID = SC.S_ID and SC.C_ID=’C1’.

• If for a S_ID from STUDENT S, at least a row exists in STUDENT_COURSE SC

with C_ID=’C1’, then inner query will return true and corresponding S_ID will be

returned as output.

V.RASHMI (Assistant Professor) PVPSIT IT 34

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

EXISTS:

• The EXISTS condition in SQL is used to check whether the result of a correlated

nested query is empty (contains no tuples) or not.
• The result of EXISTS is a boolean value True or False.
• It can be used in a

SELECT, UPDATE, INSERT or DELETE statement.

• Syntax:

SELECT column_name(s)

FROM table_name

WHERE EXISTS

(SELECT column_name(s)

FROM table_name

WHERE condition);

• Examples:
Consider the following two relation “Customers” and “Orders”.

Queries:

I. Using EXISTS condition with SELECT statement
To fetch the first and last name of the customers who placed at least one order.

SELECT fname, lname

FROM Customers

WHERE EXISTS (SELECT *

FROM Orders

WHERE Customers.customer_id = Orders.c_id);

V.RASHMI (Assistant Professor) PVPSIT IT 35

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Output:

II. Using NOT with EXISTS
Fetch last and first name of the customers who has not placed any order.

SELECT lname, fname

FROM Customer

WHERE NOT EXISTS (SELECT *

FROM Orders

WHERE Customers.customer_id = Orders.c_id);

Output:

III. Using EXISTS condition with DELETE statement
Delete the record of all the customer from Order Table whose last name is ‘Mehra’.

DELETE

FROM Orders

WHERE EXISTS (SELECT *

FROM customers

WHERE Customers.customer_id = Orders.cid

AND Customers.lname = 'Mehra');

SELECT * FROM Orders;

Output:

IV. Using EXISTS condition with UPDATE statement
Update the lname as ‘Kumari’ of customer in Customer Table whose customer_id is 401.

UPDATE Customers

SET lname = 'Kumari'

WHERE EXISTS (SELECT *

FROM Customers

V.RASHMI (Assistant Professor) PVPSIT IT 36

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

WHERE customer_id = 401);

SELECT * FROM Customers;

Output:

Aggregate functions:

Aggregate functions return single values by performing action of a group of values.

Example: Emp

• Sum (): this function calculates a sum of a group of values.

Syntax: sum(col _name)

Example:

Select sum(salary) from Emp;

Output:

340000

• Average (): this function returns the average of group of values.

Syntax: average(col _name)
Example:

Select avg(salary) from Emp;

Output:
68000

• Max (): this function returns the highest value from group of
values. Syntax: max(col _name)
Example:

Select max(salary) from Emp;

Output:
90000

• Min (): this function returns the least value from group of values.

V.RASHMI (Assistant Professor) PVPSIT IT 37

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Syntax: min(col _name)

Example:

Select min(salary) from Emp;

Output:

55000

• Count (): this function counts the number of values in a

group. Syntax: count(col _name)
Example:

Select count(name) from Emp where salary =

60000; Output:
2

Group By:

• The GROUP BY Statement in SQL is used to arrange identical data into groups with
the help of some functions. i.e if a particular column has same values in different rows
then it will arrange these rows in a group.

• Important Points:
✓ GROUP BY clause is used with the SELECT statement.

✓ In the query, GROUP BY clause is placed after the WHERE clause.

✓ In the query, GROUP BY clause is placed before ORDER BY clause if used any.

• Syntax:

SELECT column1, function_name(column2)

FROM table_name WHERE condition GROUP BY column1,

column2 ORDER BY column1, column2;
function_name: Name of the function used for example, SUM() , AVG().

table_name: Name of the table.

condition: Condition used.

Sample data tables to use in Query:

Example:

• Group By single column: Group By single column means, to place all the rows with
same value of only that particular column in one group.

• Consider the query as shown below:

V.RASHMI (Assistant Professor) PVPSIT IT 38

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

SELECT NAME, SUM(SALARY) FROM

Employee GROUP BY NAME;

OUTPUT:

As you can see in the above output, the rows with duplicate NAMEs are grouped under same

NAME and their corresponding SALARY is the sum of the SALARY of duplicate rows.

The SUM() function of SQL is used here to calculate the sum.

Group By multiple columns: Group by multiple column is say for example, GROUP BY

column1, column2. This means to place all the rows with same values of both the columns

column1 and column2 in one group.
Query:

SELECT SUBJECT, YEAR, Count(*) FROM

Student GROUP BY SUBJECT, YEAR;

Output:

As you can see in the above output the students with both same SUBJECT and YEAR are

placed in same group. And those whose only SUBJECT is same but not YEAR belongs to

different groups. So here we have grouped the table according to two columns or more than

one column.

HAVING Clause:

• HAVING clause can be used to place conditions to decide which group will be the

part of final result-set.
• We can not use the aggregate functions like SUM(), COUNT() etc. with WHERE

clause.
• So we have to use HAVING clause if we want to use any of these functions in the

conditions.
• As you can see in the output only one group out of the three groups appears in the

result-set as it is the only group where sum of SALARY is greater than 3000.
• So we have used HAVING clause here to place this condition as the condition is

required to be placed on groups not columns.

Syntax:

SELECT column1, function_name(column2)

FROM table_name

V.RASHMI (Assistant Professor) PVPSIT IT 39

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

WHERE condition

GROUP BY column1, column2

HAVING condition

ORDER BY column1, column2;

function_name: Name of the function used for example, SUM() , AVG().

table_name: Name of the table.

condition: Condition used.

SELECT NAME, SUM(SALARY) FROM Employee

GROUP BY NAME

HAVING SUM(SALARY)>3000;

Output:

ORDER BY:

• The ORDER BY statement in SQL is used to sort the fetched data in either ascending
or descending according to one or more columns.

• By default ORDER BY sorts the data in ascending order.
• We can use the keyword DESC to sort the data in descending order and the keyword

ASC to sort in ascending order.
• Sort according to one column

• To sort in ascending or descending order we can use the keywords ASC or DESC
respectively.

Syntax:

SELECT * FROM table_name ORDER BY column_name ASC|DESC;

Where
table_name: name of the table.

column_name: name of the column according to which the data is needed to be arranged.

ASC: to sort the data in ascending order.

DESC: to sort the data in descending order.

|: use either ASC or DESC to sort in ascending or descending order

Sort according to multiple columns:
To sort in ascending or descending order we can use the keywords ASC or DESC respectively.

To sort according to multiple columns, separate the names of columns by the (,) operator.

Syntax:

SELECT * FROM table_name ORDER BY column1 ASC|DESC, column2 ASC|DESC;

V.RASHMI (Assistant Professor) PVPSIT IT 40

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Now consider the above database table and find the results of different queries.

Sort according to a single column:

In this example, we will fetch all data from the table Student and sort the result in descending

order according to the column ROLL_NO.

Query:

SELECT * FROM Student ORDER BY ROLL_NO DESC;

Output:

In the above example, if we want to sort in ascending order we have to use ASC in place of

DESC.

Sort according to multiple columns:

• In this example we will fetch all data from the table Student and then sort the result in

ascending order first according to the column Age. And then in descending order

according to the column ROLL_NO.
• Note:

ASC is the default value for the ORDER BY clause. So, if we don’t specify anything

after the column name in the ORDER BY clause, the output will be sorted in

ascending order by default.

Query:

SELECT * FROM Student ORDER BY Age ASC, ROLL_NO DESC;

V.RASHMI (Assistant Professor) PVPSIT IT 41

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Output:

In the above output, we can see that first the result is sorted in ascending order according to

Age. There are multiple rows of having the same Age. Now, sorting further this result-set

according to ROLL_NO will sort the rows with the same Age according to ROLL_NO in

descending order.

Assertions:

• When a constraint involves 2 (or) more tables, the table constraint mechanism is

sometimes hard and results may not come as expected.
• To cover such situation SQL supports the creation of assertions that are constraints

not associated with only one table.
• An assertion statement should ensure a certain condition will always exist in the

database. DBMS always checks the assertion whenever modifications are done in the

corresponding table.
• A data assertion is a query that looks for problems in a dataset. If the query returns

any rows then the assertion fails.
• Data assertions are defined this way because it’s much easier to look for problems

rather than the absence of them.
• It also means that assertion queries can themselves be used to quickly inspect the data

causing the assertion to fail - making it easy to diagnose and fix the problem.

V.RASHMI (Assistant Professor) PVPSIT IT 42

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Checking field values:

Example:

• Assume that there is a database.customers table containing information about
customers in the database.

• Some checks that we might want to verify on the table’s contents include:
✓ The field email_address is always set

✓ The field customer_type is one of “business” or “individual”

• The following simple query will return any rows violating these rules:

SELECT customer_id

FROM database.customers

WHERE email_address IS NULL

OR NOT customer_type IN (“business”, “individual”)

Checking for unique fields:
We may also want to run checks across more than one row.

Example: Verify that the customer_id field is unique.

A query like the following will return any duplicate customer_id values:

SELECT

customer_id,

SUM(1) AS count

FROM database.customers

GROUP BY 1

HAVING count > 1

Combinining multiple assertions into a single query:

We can combine all of the above into a single query to quickly find any customer_id value

violating one of our rules using UNION ALL:

SELECT customer_id, “missing_email” AS reason

FROM database.customers WHERE

email_address IS NULL
UNION ALL

SELECT customer_id, “invalid_customer_type” AS reason WHERE not customer_type

in (“business”, “individual”)
FROM database.customers

UNION ALL

SELECT customer_id, “duplicate_id” AS reason

FROM (SELECT customer_id, SUM(1) AS count FROM database.customers GROUP

BY 1)
WHERE count > 1

Triggers:

• A trigger is a database object that is associated with the table, it will be activated
when a defined action is executed for the table. In another way;

• A trigger is a stored procedure in database which automatically invokes whenever a
special event in the database occurs.

V.RASHMI (Assistant Professor) PVPSIT IT 43

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

• For example, a trigger can be invoked when a row is inserted into a specified table or
when certain table columns are being updated.

• The trigger can be executed when we run the following statements:
1. INSERT
2. UPDATE
3. DELETE

• And it can be invoked before or after the event.
Syntax –
create trigger [trigger_name]

[before | after]
{insert | update |

delete} on [table_name]
[for each row]

[trigger_body]

Explanation of syntax for Trigger:
create trigger [trigger_name]:

Creates or replaces an existing trigger with the trigger_name.

[before | after]: This specifies when the trigger will be executed.

{insert | update | delete}: This specifies the DML operation.

on [table_name]: This specifies the name of the table associated with the trigger.

[for each row]: This specifies a row-level trigger, i.e., the trigger will be executed for each

row being affected.
[trigger_body]: This provides the operation to be performed as trigger is fired

BEFORE and AFTER of Trigger:
BEFORE triggers run the trigger action before the triggering statement is run.

AFTER triggers run the trigger action after the triggering statement is run.

Example:

• Given Student Report Database, in which student marks assessment is recorded.
• In such schema, create a trigger so that the total and average of specified marks is

automatically inserted whenever a record is insert.
• Here, as trigger will invoke before record is inserted so, BEFORE Tag can be

used. Suppose the database Schema shown below is considered.

V.RASHMI (Assistant Professor) PVPSIT IT 44

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Example:

SQL Trigger to problem statement.

create trigger stud_marks

before INSERT on Student for each row set

Student.total = Student.subj1 + Student.subj2 + Student.subj3,

Student.per = Student.total * 60 / 100;

Above SQL statement will create a trigger in the student database in which whenever

subjects marks are entered, before inserting this data into the database, trigger will compute

those two values and insert with the entered values. i.e.,

In this way trigger can be creates and executed in the databases.

Views:

Creating Views:

We can create View using CREATE VIEW statement. A View can be created from a single

table or multiple tables.

Syntax:

CREATE VIEW view_name AS

SELECT column1, column2.....

FROM table_name

WHERE condition;

Syntax explaination:
view_name: Name for the View

table_name: Name of the table

condition: Condition to select rows

Let us see the data from the Sample Tables:

StudentDetails:

StudentMarks:

V.RASHMI (Assistant Professor) PVPSIT IT 45

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Examples for Creating Views:

I. Creating View from a single table:
In this example we will create a View named DetailsView from the table StudentDetails.

Query:

CREATE VIEW DetailsView AS

SELECT NAME, ADDRESS

FROM StudentDetails

WHERE S_ID < 5;

To see the data in the View, we can query the view in the same manner as we query a table.

SELECT * FROM DetailsView;

Examples:
In this example, we will create a view named StudentNames from the table StudentDetails.

Query:

CREATE VIEW StudentNames AS

SELECT S_ID, NAME

FROM StudentDetails

ORDER BY NAME;

If we now query the view as,

SELECT * FROM StudentNames;

Output:

II. Creating View from multiple tables:

V.RASHMI (Assistant Professor) PVPSIT IT 46

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

In this example we will create a View named MarksView from two tables StudentDetails and

StudentMarks.

To create a View from multiple tables we can simply include multiple tables in the SELECT

statement.

Query:

CREATE VIEW MarksView AS

SELECT StudentDetails.NAME, StudentDetails.ADDRESS, StudentMarks.MARKS

FROM StudentDetails, StudentMarks

WHERE StudentDetails.NAME = StudentMarks.NAME;

To display data of View MarksView:

SELECT * FROM MarksView;

Output:

DELETING VIEWS:

SQL allows us to delete an existing View. We can delete or drop a View using the DROP

statement.
Syntax:

DROP VIEW view_name;

view_name: Name of the View which we want to delete.

Example: if we want to delete the View MarksView, we can do this as:

DROP VIEW MarksView;

UPDATING VIEWS:

There are certain conditions needed to be satisfied to update a view. If any one of these

conditions is not met, then we will not be allowed to update the view.

• The SELECT statement which is used to create the view should not include GROUP
BY clause or ORDER BY clause.

• The SELECT statement should not have the DISTINCT keyword.
• The View should have all NOT NULL values.
• The view should not be created using nested queries or complex queries.
• The view should be created from a single table.
• If the view is created using multiple tables then we will not be allowed to update the

view.

We can use the CREATE OR REPLACE VIEW statement to add or remove fields from a view.

Syntax:

V.RASHMI (Assistant Professor) PVPSIT IT 47

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

CREATE OR REPLACE VIEW view_name AS

SELECT column1,coulmn2,..

FROM table_name

WHERE condition;

For example, if we want to update the view MarksView and add the field AGE to this View

from StudentMarks Table, we can do this as:

CREATE OR REPLACE VIEW MarksView AS

SELECT StudentDetails.NAME, StudentDetails.ADDRESS,

StudentMarks.MARKS, StudentMarks.AGE

FROM StudentDetails, StudentMarks

WHERE StudentDetails.NAME = StudentMarks.NAME;

If we fetch all the data from MarksView now as:

SELECT * FROM MarksView;

Output:

Inserting a row in a view:

We can insert a row in a View in a same way as we do in a table. We can use the INSERT

INTO statement of SQL to insert a row in a View.
Syntax:

INSERT INTO view_name(column1, column2 , column3,..)

VALUES(value1, value2, value3..);

view_name: Name of the View

Example:

In the below example we will insert a new row in the View DetailsView which we have

created above in the example of “creating views from a single table”.

INSERT INTO DetailsView(NAME, ADDRESS)

VALUES("Suresh","Gurgaon");

If we fetch all the data from DetailsView now as,

SELECT * FROM DetailsView;

V.RASHMI (Assistant Professor) PVPSIT IT 48

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Output:

Deleting a row from a View:

Deleting rows from a view is also as simple as deleting rows from a table. We can use the

DELETE statement of SQL to delete rows from a view.

Also deleting a row from a view first delete the row from the actual table and the change is

then reflected in the view.
Syntax:

DELETE FROM view_name

WHERE condition;

view_name: Name of view from where we want to delete rows

condition: Condition to select rows Example:

In this example we will delete the last row from the view DetailsView which we just added in

the above example of inserting rows.

DELETE FROM DetailsView

WHERE NAME="Suresh";

If we fetch all the data from DetailsView now as,

SELECT * FROM DetailsView;

Output:

WITH CHECK OPTION:

✓ The WITH CHECK OPTION clause in SQL is a very useful clause for views.

✓ It is applicable to a updatable view. If the view is not updatable, then there is no meaning of
including this clause in the CREATE VIEW statement.

✓ The WITH CHECK OPTION clause is used to prevent the insertion of rows in the view
where the condition in the WHERE clause in CREATE VIEW statement is not satisfied.

✓ If we have used the WITH CHECK OPTION clause in the CREATE VIEW
statement, and if the UPDATE or INSERT clause does not satisfy the conditions then
they will return an error.

Example:
In the below example we are creating a View SampleView from StudentDetails Table with

V.RASHMI (Assistant Professor) PVPSIT IT 49

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

WITH CHECK OPTION clause.

CREATE VIEW SampleView AS

SELECT S_ID, NAME

FROM StudentDetails

WHERE NAME IS NOT NULL

WITH CHECK OPTION;

In this View if we now try to insert a new row with null value in the NAME column then it

will give an error because the view is created with the condition for NAME column as NOT

NULL.

For example,though the View is updatable but then also the below query for this View is not

valid:

INSERT INTO SampleView(S_ID)

VALUES(6);

NOTE: The default value of NAME column is null.

3. Formal Relational Languages:

3.1 Introduction

Relational algebra is the basic set of operations for the relational model. These operations

enable a user to specify basic retrieval requests as relational algebra expressions. The result

of an operation is a new relation, which may have been formed from one or more input

relations. The relational algebra is very important for several reasons

• First, it provides a formal foundation for relational model operations.
• Second, and perhaps more important, it is used as a basis for implementing and

optimizing queries in the query processing and optimization modules that are integral

parts of relational database management systems (RDBMSs)
• Third, some of its concepts are incorporated into the SQL standard query language for

RDBMSs

Relation Algebra is a procedural language consisting of a set of operations that take one or

two relations as input and produce a new relation as their result. Six basic operators are:

2.2 Unary Relational Operations: SELECT and PROJECT

2.2.1 The SELECT Operation

The SELECT operation denoted by (sigma) is used to select a subset of the tuples from a

relation based on a selection condition. The selection condition acts as a filter that keeps only

V.RASHMI (Assistant Professor) PVPSIT IT 50

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

those tuples that satisfy a qualifying condition. Alternatively, we can consider the SELECT

operation to restrict the tuples in a relation to only those tuples that satisfy the condition.

The SELECT operation can also be visualized as a horizontal partition of the relation into

two sets of tuples those tuples that satisfy the condition and are selected, and those tuples that

do not satisfy the condition and are discarded.

In general, the select operation is denoted by

<select condition> (R)

where,

- the symbol is used to denote the select operator

- the selection condition is a Boolean (conditional) expression specified on the

attributes of relation R
- tuples that make the condition true are selected

• appear from the result of the operation

- tuples that make the condition false are filtered out

• discarded from the result of the operation

The Boolean expression specified in <selection condition> is made up of a number of clauses

of the form:

<attribute name> <comparison op> <constant value> or

<attribute name> <comparison op> <attribute name>

where

<attribute name> is the name of an attribute of R,

<comparision op> is one of the operators {=, <, >, ≤, ≥, ≠}

<constant value> is a constant value from the attribute domain

Clauses can be connected by the standard Boolean operators and, or, and not to form a

general selection condition

• The select operation selects tuples that satisfy a given predicate.
• Notation: p (r)

p is called the selection predicate
• Example: select those tuples of the instructor relation where the instructor is

in the “Physics” department.
• Query:

dept_name=“Physics” (instructor)

• Result:

V.RASHMI (Assistant Professor) PVPSIT IT 51

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Examples:

1) Select the EMPLOYEE tuples whose department number is 4.

 DNO = 4 (EMPLOYEE)

2) Select the employee tuples whose salary is greater than $30,000.

 SALARY > 30,000 (EMPLOYEE)

3) Select the tuples for all employees who either work in department 4 and make over

$25,000 per year, or work in department 5 and make over $30,000
 (Dno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000)(EMPLOYEE)

The result of a SELECT operation can be determined as follows:

• The <selection condition> is applied independently to each individual tuple t in R
• If the condition evaluates to TRUE, then tuple t is selected. All the selected tuples

appear in the result of the SELECT operation
• The Boolean conditions AND, OR, and NOT have their normal interpretation, as

follows:

- (cond1 AND cond2) is TRUE if both (cond1) and (cond2) are TRUE; otherwise, it is

FALSE.

- (cond1 OR cond2) is TRUE if either (cond1) or (cond2) or both are TRUE; otherwise,

it is

FALSE.

- (NOT cond) is TRUE if cond is FALSE; otherwise, it is FALSE.

The SELECT operator is unary; that is, it is applied to a single relation. The degree of the

relation resulting from a SELECT operation is the same as the degree of R. The number of

tuples in the resulting relation is always less than or equal to the number of tuples in R. That

is,

| C(R)| ≤ for any condition C

The fraction of tuples selected by a selection condition is referred to as the selectivity of the

condition.

The SELECT operation is commutative; that is,

 <cond1> (<cond2>(R))= <cond2> (<cond1>(R))

Hence, a sequence of SELECTs can be applied in any order.we can always combine a

cascade (or sequence) of SELECT operations into a single SELECT operation with a

conjunctive (AND) condition; that is,

<cond1> <condn>(R <cond1>AND<cond2>AND ... AND<condn>(R)

V.RASHMI (Assistant Professor) PVPSIT IT 52

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

In SQL, the SELECT condition is specified in the WHERE clause of a query.For example,
the following operation:

Dno=4 AND Salary>25000 (EMPLOYEE)

would do the following SQL query:

SELECT * FROM EMPLOYEE WHERE Dno=4 AND Salary>25000;

2.2.2 The PROJECT Operation

The PROJECT operation denoted by selects certain columns from the table and discards the

other columns Used when we are interested in only certain attributes of a relation. The result

of the PROJECT operation can be visualized as a vertical partition of the relation into two

relations:

- one has the needed columns (attributes) and contains the result of the operation
- the other contains the discarded columns

The general form of the PROJECT operation is

<attribute list>(R)

where
Π (pi) - symbol used to represent the PROJECT operation,

<attributelist> - desired sublist of attributes from the attributes of relation R.

The result of the PROJECT operation has only the attributes specified in <attribute list> in

the same order as they appear in the list. Hence, its degree is equal to the number of attributes

in <attribute list>

• Project Operation is a unary operation that returns its argument relation, with

certain attributes left out.
• Notation: A1,A2,A3 ….Ak (r)

where A1, A2, …, Ak are attribute names and r is a relation name.

• The result is defined as the relation of k columns obtained by erasing the columns that
are not listed.

• Duplicate rows removed from result, since relations are sets.

Example: eliminate the dept_name attribute of instructor
Query: ID, name, salary (instructor)

Result:

V.RASHMI (Assistant Professor) PVPSIT IT 53

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Example:

1) To list each employee’s first and last name and salary we can use the PROJECT

operation as follows:
Lname, Fname, Salary(EMPLOYEE)

If the attribute list includes only nonkey attributes of R, duplicate tuples are likely to

occur. The result of the PROJECT operation is a set of distinct tuples, and hence a

valid relation. This is known as duplicate elimination.For example, consider the

following PROJECT operation:

gender, Salary(EMPLOYEE)

The tuple <’F’, 25000> appears only once in the resulting relation even though
this combination of values appears twice in the EMPLOYEE relation.

The number of tuples in a relation resulting from a PROJECT operation is always less
than or equal to the number of tuples in R. Commutativity does not hold on PROJECT

<list1> <list2>(R <list1>(R)

as long as <list2> contains the attributes in <list1>; otherwise, the left-hand side is an
incorrect expression.

In SQL, the PROJECT attribute list is specified in the SELECT clause of a query. For
example, the following operation:

gender, Salary(EMPLOYEE)

would correspond to the following SQL query:

SELECT DISTINCT gender, Salary FROM

EMPLOYEE; Composition of Relational Operations

• The result of a relational-algebra operation is relation and therefore of relational-
algebra operations can be composed together into a relational-algebra expression.

• Consider the query -- Find the names of all instructors in the Physics department.
name(dept_name =“Physics” (instructor))

• Instead of giving the name of a relation as the argument of the projection
operation, we give an expression that evaluates to a relation.

V.RASHMI (Assistant Professor) PVPSIT IT 54

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

2.2.3 Sequences of Operations and the RENAME Operation

• The results of relational-algebra expressions do not have a name that we can use

to refer to them. The rename operator, ,is provided for that purpose
• The expression:

x (E)

returns the result of expression E under the name x

• Another form of the rename operation:
x(A1,A2, .. An) (E)

For most queries, we need to apply several relational algebra operations one after the other.

Either we can write the operations as a single relational algebra expression by nesting the

operations, or we can apply one operation at a time and create intermediate result relations. In

the latter case, we must give names to the relations that hold the intermediate results.

For example, to retrieve the first name, last name, and salary of all employees who work in

department number 5, we must apply a SELECT and a PROJECT operation. We can write a

single relational algebra expression, also known as an in-line expression, as follows:

Fname, Lname, Salary(Dno=5(EMPLOYEE))

Alternatively, we can explicitly show the sequence of operations, giving a name to each

intermediate relation, as follows:

DEP5_EMPS ← Dno=5(EMPLOYEE)

RESULT ← Fname, Lname, Salary(DEP5_EMPS)

We can also use this technique to rename the attributes in the intermediate and result relations.

To rename the attributes in a relation, we simply list the new attribute names in parentheses.

Dno=5(EMPLOYEE)

R(First_name, Last_name, Salary) Fname, Lname, Salary(TEMP)

V.RASHMI (Assistant Professor) PVPSIT IT 55

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

If no renaming is applied, the names of the attributes in the resulting relation of a SELECT

operation are the same as those in the original relation and in the same order.For a PROJECT

operation with no renaming, the resulting relation has the same attribute names as those in the

projection list and in the same order in which they appear in the list.

We can also define a formal RENAME operation which can rename either the relation name

or the attribute names, or both as a unary operator.

The general RENAME operation when applied to a relation R of degree n is denoted by any

of the following three forms:

The first expression renames both the relation and its attributes. Second renames the relation

only and the third renames the attributes only.If the attributes of R are (A1, A2, ..., An) in that

order, then each Ai is renamed as Bi.

Renaming in SQL is accomplished by aliasing using AS, as in the following example:

SELECT E.Fname AS First_name,

E.Lname AS Last_name,

E.Salary AS Salary

FROM EMPLOYEE AS E

WHERE E.Dno=5,

3.1 Relational Algebra Operations from Set Theory:

3.1.1 The UNION, INTERSECTION and MINUS Operations

• UNION: The result of this operation, denoted by R S, is a relation that includes all

tuples that are either in R or in S or in both R and S. Duplicate tuples are eliminated.

• INTERSECTION: The result of this operation, denoted by R S, is a relation that

includes all tuples that are in both R and S.

• SET DIFFERENCE (or MINUS): The result of this operation, denoted by R S, is a
relation that includes all tuples that are in R but not in S.

Example: Consider the the following two relations: STUDENT & INSTRUCTOR

V.RASHMI (Assistant Professor) PVPSIT IT 56

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

STUDENT INSTRUCTOR STUDENT INSTRUCTOR

STUDENT-INSTRUCTOR INSTRUCTOR-STUDENT

Example: To retrieve the Social Security numbers of all employees who either

work in department 5 or directly supervise an employee who works in

department 5.

DEPT5_EMP← Dno=5(EMPLOYEE)

RESULT1← Ssn(DEPT5_EMPS)

RESULT2(Ssn) ← Super_Ssn(DEPT5_EMPS)
RESULT← RESULT1 ∪ RESULT2

V.RASHMI (Assistant Professor) PVPSIT IT 57

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Single relational algebra expression:

Ssn Dno=5 (EMPLOYEE)) SSuper_ssn (Dno=5 (EMPLOYEE))

UNION, INTERSECTION and SET DIFFERENCE are binary operations; that is, each is

applied to two sets (of tuples). When these operations are adapted to relational databases, the

two relations on which any of these three operations are applied must have the same type of

tuples; this condition has been called union compatibility or type compatibility.

Two relations R(A1, A2, ..., An) and S(B1, B2, ..., Bn) are said to be union compatible (or

type compatible) if they have the same degree n and if dom(Ai) = dom(Bi) for 1 ≤ i ≤ n.

This means that the two relations have the same number of attributes and each

corresponding pair of attributes has the same domain.

Both UNION and INTERSECTION are commutative operations; that is,

R S = S R and R S = S R

Both UNION and INTERSECTION can be treated as n-ary operations applicable to any

number of relations because both are also associative operations; that is,

R (S T) = (R S) T and (R S) T = R (S T)

The MINUS operation is not commutative; that is,

in general,

V.RASHMI (Assistant Professor) PVPSIT IT 58

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

R-S S-R

INTERSECTION can be expressed in terms of union and set difference as follows,

In SQL, there are three operations UNION, INTERSECT, and EXCEPT that correspond

to the set operations

Union Operation:

• The union operation allows us to combine two relations
• Notation: r ∪ s

For r ∪ s to be valid.

1. r, s must have the same arity (same number of attributes)

2. The attribute domains must be compatible (example: 2
nd

 column of r

deals with the same type of values as does the 2
nd

 column of s)

Set-Intersection Operation:

• The set-intersection operation allows us to find tuples that are in both the input
relations.

• Notation: r ∩ s

• Assume:
r, s have the same arity
attributes of r and s are compatible

• Example: Find the set of all courses taught in both the Fall 2017 and the Spring
2018 semesters.

Π course_id(semester=“Fall”Λyear=2017(section))∩ Πcourse_id (semester=“Spring” Λ year=2018 (section))

• Result

Set Difference (Minus) Operation:

V.RASHMI (Assistant Professor) PVPSIT IT 59

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

• The set-difference operation allows us to find tuples that are in one relation but
are not in another.

• Notation: r – s
• Set differences must be taken between compatible relations.

r and s must have the same arity
attribute domains of r and s must be compatible

• Example: to find all courses taught in the Fall 2017 semester, but not in the Spring
2018 semester

Π course_id(semester=“Fall”Λyear=2017(section))−
Πcourse_id (semester=“Spring” Λ year=2018 (section))

• Result:

Equivalent Queries

• There is more than one way to write a query in relational algebra.
• Example: Find information about courses taught by instructors in the Physics

department with salary greater than 90,000
Query 1

dept_name=“Physics” ⋀
Query 2

dept_name=“Physics” (

salary > 90,000

salary > 90.000

(instructor)

(instructor))

The two queries are not identical; they are, however, equivalent -- they give the

same result on any database.

3.1.2 The CARTESIAN PRODUCT (CROSS PRODUCT)

Operation Cartesian Product Operation in Relational Algebra

• Applying CARTESIAN PRODUCT on two relations that is on two sets of tuples, it

will take every tuple one by one from the left set(relation) and will pair it up with all

the tuples in the right set(relation).
• So, the CROSS PRODUCT of two relation A(R1, R2, R3, …, Rp) with degree p, and

B(S1, S2, S3, …, Sn) with degree n, is a relation C(R1, R2, R3, …, Rp, S1, S2, S3, …,
Sn) with degree p + n attributes.

• Notation: A ✕ S
where A and S are the relations,
the symbol ‘✕’ is used to denote the CROSS PRODUCT operator.

• Example:
Consider two relations STUDENT(SNO, FNAME, LNAME) and

DETAIL(ROLLNO, AGE) below:

V.RASHMI (Assistant Professor) PVPSIT IT 60

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

• On applying CROSS PRODUCT on STUDENT and

DETAIL: STUDENT ✕ DETAILS

So the number of tuples in the resulting relation on performing CROSS

PRODUCT is 2*2 = 4.

The CARTESIAN PRODUCT operation also known as CROSS PRODUCT or CROSS JOIN

denoted by × is a binary set operation, but the relations on which it is applied do not have to

be union compatible. This set operation produces a new element by combining every member

(tuple) from one relation (set) with every member (tuple) from the other relation (set).

In general, the result of R(A1, A2, ..., An) × S(B1, B2, ..., Bm) is a relation Q with degree

n+m attributes Q(A1, A2, ..., An, B1, B2, ..., Bm), in that order. The resulting relation Q has

one tuple for each combination of tuples one from R and one from S. Hence, if R has nR

tuples (denoted as |R| = nR), and S has nS tuples, then R × S will have nR * nS tuples

Example: Suppose that we want to retrieve a list of names of each employee’s dependents.

V.RASHMI (Assistant Professor) PVPSIT IT 61

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

The CARTESIAN PRODUCT creates tuples with the combined attributes of two relations.

We can SELECT related tuples only from the two relations by specifying an appropriate

selection condition after the Cartesian product.

In SQL, CARTESIAN PRODUCT can be realized by using the CROSS JOIN option in

joined tables.

Cartesian Product Operation in Relational Algebra

• Applying CARTESIAN PRODUCT on two relations that is on two sets of tuples, it

will take every tuple one by one from the left set (relation) and will pair it up with all

the tuples in the right set (relation).
• So, the CROSS PRODUCT of two relation A(R1, R2, R3, …, Rp) with degree p, and

B(S1, S2, S3, …, Sn) with degree n, is a relation C(R1, R2, R3, …, Rp, S1, S2, S3, …,
Sn) with degree p + n attributes.

• Notation: A ✕ S
where A and S are the relations,
the symbol ‘✕’ is used to denote the CROSS PRODUCT operator.

• Example:
Consider two relations STUDENT(SNO, FNAME, LNAME) and

DETAIL(ROLLNO, AGE) below:

V.RASHMI (Assistant Professor) PVPSIT IT 62

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

On applying CROSS PRODUCT on STUDENT and DETAIL:

STUDENT ✕ DETAILS

So the number of tuples in the resulting relation on performing CROSS

PRODUCT is 2*2 = 4.

3.5 Binary Relational Operations: JOIN and DIVISION:

3.5.1 The JOIN Operation

• JOIN Operation: Join in DBMS is a binary operation which allows you to combine
join product and selection in one single statement.

• The goal of creating a join condition is that it helps you to combine the data from two

or more DBMS tables.
• The tables in DBMS are associated using the primary key and foreign keys.
• Types of Join

V.RASHMI (Assistant Professor) PVPSIT IT 63

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

1. Natural Join:

A natural join is the set of tuples of all combinations in R and S that are equal on their common attribute names. It is denoted by ⋈.

Example: Let's use the EMPLOYEE table and SALARY table:
Input: ∏ EMP_NAME, SALARY (EMPLOYEE ⋈ SALARY)

Output:

2. Outer Join:

The outer join operation is an extension of the join operation. It is used to deal with missing

information.
Example:
EMPLOYEE

FACT_WORKERS

Input: (EMPLOYEE ⋈ FACT_WORKERS)

Output:

An outer join is basically of three types:

a) Left outer join
b) Right outer join
c) Full outer join

a) Left Outer Join: Left outer join contains the set of tuples of all combinations in R

and S that are equal on their common attribute names.
• In the left outer join, tuples in R have no matching tuples in S.
• It is denoted by ⟕.

• Example: Using the above EMPLOYEE table and FACT_WORKERS table.
• Input: EMPLOYEE ⟕ FACT_WORKERS

• Output:

V.RASHMI (Assistant Professor) PVPSIT IT 64

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

b) Right outer join: Right outer join contains the set of tuples of all combinations in R

and S that are equal on their common attribute names.
• In right outer join, tuples in S have no matching tuples in R.
• It is denoted by ⟖.

• Example: Using the above EMPLOYEE table and FACT_WORKERS Relation
• Input: EMPLOYEE ⟖ FACT_WORKERS

• Output:

c) Full outer join: Full outer join is like a left or right join except that it contains all

rows from both tables.
• In full outer join, tuples in R that have no matching tuples in S and tuples in S that

have no matching tuples in R in their common attribute name.
• It is denoted by ⟗.

• Example: Using the above EMPLOYEE table and FACT_WORKERS table
• Input: EMPLOYEE ⟗ FACT_WORKERS

• Output:

3) Equi join: It is also known as an inner join. It is the most common join. It is based on

matched data as per the equality condition. The equi join uses the comparison operator(=).
Example:

V.RASHMI (Assistant Professor) PVPSIT IT 65

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

CUSTOMER RELATION

PRODUCT

Input: CUSTOMER ⋈ PRODUCT

Output:

The JOIN operation, denoted by is used to combine related tuples from two relations

into single longer tuples. It allows us to process relationships among relations.The general

form of a JOIN operation on two relations R(A1, A2, ..., An) and S(B1, B2, ..., Bm) is

R <join condition>S

Example: Retrieve the name of the manager of each department.

To get the manager’s name, we need to combine each department tuple with the employee

tuple whose Ssn value matches the Mgr_ssn value in the department tuple

The result of the JOIN is a relation Q with n + m attributes Q(A1, A2, ..., An,B1, B2, ..., Bm

in that order. Q has one tuple for each combination of tuples one from R and one from S

whenever the combination satisfies the join condition. This is the main difference between

CARTESIAN PRODUCT and JOIN. In JOIN, only combinations of tuples satisfying the join

condition appear in the result, whereas in the CARTESIAN PRODUCT all combinations of

tuples are included in the result. The join condition is specified on attributes from the two

relations R and S and is evaluated for each combination of tuples.

Each tuple combination for which the join condition evaluates to TRUE is included in the

resulting relation Q as a single combined tuple. A general join condition is of the form

<condition> AND <condition> AND...AND <condition>

V.RASHMI (Assistant Professor) PVPSIT IT 66

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

where each <condition> is of the form Ai Bj, Ai is an attribute of R, B is an attribute of S, Ai

and Bj have the same domain, and (theta) is one of the comparision operators {=, <, >, ≤, ≥,

≠}. A JOIN operation with such a general join condition is called as THETA JOIN. Tuples

whose join attributes are NULL or for which the join condition is FALSE do not appear in the

result.

3.5.2 Variations of JOIN: The EQUIJOIN and NATURAL JOIN

The most common use of JOIN involves join conditions with equality comparisons only.

Such a JOIN, where the only comparison operator used is =, is called an EQUIJOIN.In the

result of an EQUIJOIN we always have one or more pairs of attributes that have identical

values in every tuple.

For example the values of the attributes Mgr_ssn and Ssn are identical in every tuple of

DEPT_MGR (the EQUIJOIN result) because the equality join condition specified on these

two attributes requires the values to be identical in every tuple in the result.

The standard definition of NATURAL JOIN requires that the two join attributes (or each pair

of join attributes) have the same name in both relations. If this is not the case, a renaming

operation is applied first. Suppose we want to combine each PROJECT tuple with the

DEPARTMENT tuple that controls the project.first we rename the Dnumber attribute of

DEPARTMENT to Dnum so that it has the same name as the Dnum attribute in PROJECT

and then we apply NATURAL JOIN:

PROJ_DEPT ← PROJECT * (Dname, Dnum, Mgr_ssn, Mgr_start_date)(DEPARTMENT)

The same query can be done in two steps by creating an intermediate table DEPT as follows:

(Dname, Dnum, Mgr_ssn,Mgr_start_date)(DEPARTMENT)

The attribute Dnum is called the join attribute for the NATURAL JOIN operation, because it

is the only attribute with the same name in both relations.

If the attributes on which the natural join is specified already have the same names in both

relations, renaming is unnecessary. For example, to apply a natural join on the Dnumber

attributes of DEPARTMENT and DEPT_LOCATIONS, it is sufficient to write

V.RASHMI (Assistant Professor) PVPSIT IT 67

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

In general, the join condition for NATURAL JOIN is constructed by equating each pair of

join attributes that have the same name in the two relations and combining these conditions

with AND. If no combination of tuples satisfies the join condition, the result of a JOIN is an

empty relation with zero tuples.

A more general, but nonstandard definition for NATURAL JOIN is

where,

<list1> : list of i attributes from R,

<list2> : list of i attributes from S

The lists are used to form equality comparison conditions between pairs of corresponding

attributes and then the conditions are then ANDed together. Only the list corresponding to

attributes of the first relation R <list1> is kept in the result Q.

In general, if R has nR tuples and S has nS tuples, the result of a JOIN operation R <join

condition> S will have between zero and nR * nS tuples. The expected size of the join result

divided by the maximum size nR * nS leads to a ratio called join selectivity, which is a

property of each join condition. If there is no join condition, all combinations of tuples

qualify and the JOIN degenerates into a CARTESIAN PRODUCT, also called CROSS

PRODUCT or CROSS JOIN.

A single JOIN operation is used to combine data from two relations so that related

information can be presented in a single table. These operations are also known as inner

joins. Informally, an inner join is a type of match and combine operation defined formally as

a combination of CARTESIAN PRODUCT and SELECTION. The NATURAL JOIN or

EQUIJOIN operation can also be specified among multiple tables, leading to an n-way join.

For example, consider the following three-way join:

This combines each project tuple with its controlling department tuple into a single tuple, and

then combines that tuple with an employee tuple that is the department manager. The net

result is a consolidated relation in which each tuple contains this project-department-manager

combined information.

In SQL, JOIN can be realized in several different ways

V.RASHMI (Assistant Professor) PVPSIT IT 68

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

- The first method is to specify the <join conditions> in the WHERE clause, along with

any other selection conditions.
- The second way is to use a nested relation
- Another way is to use the concept of joined tables

3.5.3 A Complete Set of Relational Algebra Operations

The set of relational algebra operations is a complete set; that is, any of the

other original relational algebra operations can be expressed as a sequence of operations from

this set. For example, the INTERSECTION operation can be expressed by using UNION and

MINUS as follows:

As another example, a JOIN operation can be specified as a CARTESIAN PRODUCT

followed by a SELECT operation,

Similarly, a NATURAL JOIN can be specified as a CARTESIAN PRODUCT preceded by

RENAME and followed by SELECT and PROJECT operations. Hence, the various JOIN

operations are also not strictly necessary for the expressive power of the relational algebra.

3.5.4 The DIVISION Operation

• Division operation: The division operator is used for queries which involve the ‘all’.
R1 ÷ R2 = tuples of R1 associated with all tuples of R2.

• Example: Retrieve the name of the subject that is taught in all courses.

V.RASHMI (Assistant Professor) PVPSIT IT 69

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

• The expression:
Smith ← Π Pno(σ Ename = ‘john smith’ (employee * works on Pno=Eno))

The DIVISION operation, denoted by ÷, is useful for a special kind of query that sometimes

occurs in database applications. An example is Retrieve the names of employees who work

on all the projects that ‘John Smith’ works on. To express this query using the DIVISION

operation, proceed as follows.

• First, retrieve the list of project numbers that’John Smith’ works on in the

intermediate relation SMITH_PNOS:

• Next, create a relation that includes a tuple <Pno, Essn> whenever the employee

whose Ssn is Essn works on the project whose number is Pno in the intermediate

relation SSN_PNOS:

• Finally, apply the DIVISION operation to the two relations, which gives the desired
employees’ Social Security numbers:

V.RASHMI (Assistant Professor) PVPSIT IT 70

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

In general, the DIVISION operation is applied to two relations R(Z) ÷ S(X), where the

attributes of R are a subset of the attributes of S; that is, X Z.Let Y be the set of attributes of

R that are not attributes of S; that is, Y = Z X (and hence Z = X Y). The result of DIVISION

is a relation T(Y) that includes a tuple t if tuples tR appear in R with tR [Y] = t, and with tR

[X] = tS for every tuple tS in S. This means that, for a tuple t to appear in the result T of t

Figure below illustrates a DIVISION operation where X = {A}, Y = {B}, and Z = {A, B}.

The tuples (values) b1 and b4 appear in R in combination with all three tuples in S; that is why

they appear in the resulting relation T. All other values of B in R do not appear with all the tuples

in S and are not selected: b2 does not appear with a2, and b3 does not appear with a1.

The DIVISION operation can be expressed as a sequence of , x and – operations are as

follows:

V.RASHMI (Assistant Professor) PVPSIT IT 71

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Table: Operations of Relational Algebra

3.5.5 Notation for Query Trees

Query tree (query evaluation tree or query execution tree) is used in relational systems to

represent queries internally. A query tree is a tree data structure that corresponds to a

relational algebra expression. It represents the input relations of the query as leaf nodes of the

tree, and represents the relational algebra operations as internal nodes.

An execution of the query tree consists of executing an internal node operation whenever its

operands represented by its child nodes are available, and then replacing that internal node by

the relation that results from executing the operation. The execution terminates when the root

node is executed and produces the result relation for the query.

Example: For every project located in ‘Stafford’, list the Project number, the controlling

department number and the department manager’s last name, address and birth date.

V.RASHMI (Assistant Professor) PVPSIT IT 72

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Leaf nodes P, D, and E represent the three relations PROJECT, DEPARTMENT, and

EMPLOYEE. The relational algebra operations in the expression are represented by internal

tree nodes. The query tree signifies an explicit order of execution in the following sense. The

node marked (1) must begin execution before node (2) because some resulting tuples of

operation (1) must be available before we can begin to execute operation (2). Similarly, node

(2) must begin to execute and produce results before node (3) can start execution, and so on.

A query tree gives a good visual representation and understanding of the query in terms of

the relational operations it uses and is recommended as an additional means for expressing

queries in relational algebra.

3.7 Examples of Queries in Relational Algebra:

Query 1. Retrieve the name and address of all employees who work for the ‘Research’

department.

Query 2. For every project located in ‘Stafford’, list the project number, the controllong

department number, and the department manager’s last name, address and birth date.

V.RASHMI (Assistant Professor) PVPSIT IT 73

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-2

Query 3. Find the names of employees who work on all the projects controlled by

department number 5.

Query 4. Make a list of project numbers for projects that involve an employee whose

last name is ‘Smith’, either as a worker or as a manager as a department that controls

the project.

Query 5. List the names of all employees with two or more dependents.

Query 6. Retrieve the names of employees who have no dependents.

Query 7. List the names of managers who have at least one dependent.

V.RASHMI (Assistant Professor) PVPSIT IT 74

